Como funcionam os radares?

O radar é normalmente invisível, mas está presente em nosso cotidiano.

O controle de tráfego aéreo usa radares para rastrear aviões no solo como no ar, além de usá-lo também na hora de orientar os pilotos para que façam pousos suaves.

Além disso, quem também usa os radares é a polícia, mas com o objetivo de detectar a velocidade dos automóveis.

Já a Nasa os usa para mapear a Terra e outros planetas, para rastrear satélites e fragmentos espaciais e para ajudar na hora de manobrar suas aeronaves.

Os militares, por sua vez, usam radares para detectar os inimigos e guiar suas armas até os alvos.

Os meteorologistas usam radares para rastrear tempestades, furacões e tornados. Até o dispositivo que faz as portas das lojas abrirem automaticamente é um tipo de radar. Depois de ver todos esses casos, nem preciso dizer que o radar é uma tecnologia extremamente útil.

Quando as pessoas usam radares, geralmente estão tentando fazer uma destas 3 coisas:

  • detectar a presença de um objeto distante: o normal é detectar objetos que estejam em movimento, como um avião, mas os radares também podem ser usados para detectar objetos imóveis enterrados;
  • detectar a velocidade de um objeto: esta é a razão por que a polícia usa o radar;
  • mapear algo: o ônibus espacial e os satélites artificiais em órbita usam algo chamado de Radar de Abertura Sintética (SAR) para criar mapas topográficos detalhados da superfície dos planetas e de suas luas.

O interessante é que essas três atividades podem ser realizadas usando duas coisas com as quais você deve estar bem familiarizado no seu dia-a-dia: o eco e o efeito Doppler. Estes dois conceitos são fáceis de entender em termos de som porque seus ouvidos escutam ecos e o efeito Doppler todos os dias. Pois é, o radar aproveita essas duas coisas, só que utilizando ondas de rádio.

Neste artigo, vamos revelar todos os segredos dos radares. Primeiro, vamos dar uma olhada na versão sonora, já que ela é mais familiar para você.

O eco e o efeito Doppler

Quando gritamos em um poço, o som do grito vai até lá embaixo e é refletido (ecoa) na superfície da água existente no fundo desse poço. Se você contar o tempo que o eco demora para retornar e souber a velocidade do som, dá para calcular a profundidade do poço com muita precisão.

Quando gritamos em um poço, o som do grito vai até lá embaixo e é refletido (ecoa) na superfície da água existente no fundo desse poço. Se você contar o tempo que o eco demora para retornar e souber a velocidade do som, dá para calcular a profundidade do poço com muita precisão.

O eco é algo perceptível. Se você gritar na direção de um poço ou cânion, o eco volta logo depois. Mas por que isso ocorre? O eco acontece porque algumas das ondas sonoras do seu grito se refletem em uma superfície e fazem todo o caminho de volta até os seus ouvidos. O tempo levado entre o momento em que você gritou e o momento em que ouviu o eco é determinado pela distância entre você e a superfície que o criou.

Mas não é só o eco que é comum, o efeito Doppler também o é. Você deve senti-lo todos os dias, mas provavelmente não nota. Ele acontece quando o som é gerado, ou refletido, por um objeto em movimento ou refletido nele. Em casos de velocidade extrema é o efeito Doppler que cria o ruído sônico (veja abaixo). O efeito Doppler pode ser entendido da seguinte forma: digamos que há um carro vindo na sua direção a 60 km/h e o motorista está buzinando. Você vai ouvir a buzina tocando uma “nota” enquanto o carro se aproxima, mas quando o carro passar por você, o som da buzina vai mudar para uma nota mais grave. O efeito Doppler causa essa mudança.

O que acontece é o seguinte: a velocidade do som que se propaga pelo ar do estacionamento é fixa. Para simplificar nossos cálculos, vamos dizer que essa velocidade é de 900 km/h (a velocidade exata depende da pressão do ar, da temperatura e da umidade). Imagine que o carro está parado a uma distância de exatamente 1,0 km de você e fica buzinando por um minuto, nem um segundo a mais, nem um segundo a menos. As ondas sonoras da buzina se propagam na sua direção a uma velocidade de 900 km/h. Você vai ficar sem ouvir nada nos quatro primeiros segundos (tempo para o som percorrer 1,0 km a uma velocidade de 900 km/h), seguidos de um minuto do som da buzina.

Efeito Doppler: a pessoa atrás do carro ouve uma nota mais grave do que o motorista, porque o carro está se distanciando. A pessoa na frente ouve uma nota mais aguda do que o motorista, porque o carro está se aproximando dela.

Efeito Doppler: a pessoa atrás do carro ouve uma nota mais grave do que o motorista, porque o carro está se distanciando. A pessoa na frente ouve uma nota mais aguda do que o motorista, porque o carro está se aproximando dela.

Add Comment